

L'Institut Agro Rennes-Angers ☐ Site d'Angers ☐ Site de Rennes

Année universitaire: 2022-2023

MASTER:

GAED

PARCOURS (et option éventuelle):

TELENVI

Mémoire de fin d'études

☐ d'ingénieur de l'Institut Agro Rennes-Angers (Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement)

□ de master de l'Institut Agro Rennes-Angers (Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement)

 \boxtimes de Master GAED / TELENVI du département de Géographie de l'Université Rennes 2

Apport de la télédétection à l'analyse des échanges de flux de carbone entre l'atmosphère et les écosystèmes côtiers - Application aux littoraux de Charente-Maritime

Par: Maxime Paschal

Crédits : Nicolas Lachaussée, 2023

Soutenu à Rennes le 15 Septembre 2023

Devant le jury composé de :

Président : Autres membres du jury (Nom, Qualité)

Maître de stage: Natacha Volto, Nathalie Long

Enseignant référent : Samuel Corgne

Les analyses et les conclusions de ce travail d'étudiant n'engagent que la responsabilité de son auteur et non celle de l'Institut Agro Rennes-Angers et de l'Université Rennes 2

Remerciements:

Tout d'abord j'aimerais remercier Nathalie et Natacha pour m'avoir encadré pendant ce stage. Merci pour vos précieux conseils et votre disponibilité au quotidien. Merci de m'avoir laissé libre d'explorer certaines pistes et de m'avoir permis de défendre mes idées et mes choix.

Merci à Pierre et Camille pour leurs explications et pour leurs données. Merci à Pierre de m'avoir permis de lui proposer différentes solutions pour avancer dans ce projet. Merci à Bénédicte pour son aide sur le terrain. Merci à Cécilia de m'avoir conseillé et de m'avoir permis de présenter les travaux de mon stage lors des Rencontres Géo 17. Enfin un grand merci à Nicolas pour m'avoir appris autant de choses lors des missions drones et d'avoir sauvé à plusieurs reprises mes relevés GNSS.

Je voudrais remercier d'une manière plus globale tous les membres du LIENSs pour leur accueil et leur gentillesse au quotidien.

Je voudrais remercier les copains du laboratoire avec qui j'ai passé six mois merveilleux. Tout d'abord, les membres du bureau "Laura Rochelle Territoire Zéro Capteur" : Dylan, Lucila, Laura et Quentin.

Ensuite merci aux cartothéliciens : Aline, Flora, César, Louis-Marin et Elie.

Enfin merci aux stagiaires des autres bureaux : Chloé, Jade, Louise, Tanguy Thibaud, Maude et Clémence.

Un immense merci à Dylan qui a été le premier avec qui je me suis bien étendu au labo. Merci pour son aide sur le terrain pour identifier la végétation. Sans lui, je ne sais pas à quoi ressembleraient mes cartes.

Je tiens à remercier l'ensemble de l'équipe pédagogique du master TELENVI mais aussi les copains de la promo surtout Nadège, Camille et Guillaume. Ensemble nous aurons passé presque deux ans à nous serrer les coudes pour que les moments difficiles le soient moins.

Un grand merci à mes parents pour m'avoir élevé et de m'avoir permis de grandir dans la joie, la bonne humeur et la santé. Merci pour tous nos fantastiques moments passés ensemble. Grâce à eux et à leur soutien j'ai pu m'épanouir et suivre des études que j'ai aimées. Merci de m'avoir permis d'étudier et de prendre du plaisir à le faire pendant six ans sans que je n'aie à me soucier de rien.

Merci à la famille de Julie : Valérie, Pascal, Gaël et Maela pour tous les bons moments passés ensemble et pour vos encouragements.

Pour finir j'aimerais remercier Julie. C'est à toi que je dois donner le plus grand des mercis. Cela fait maintenant plus de cinq ans que tu me supportes et que tu m'aides à avancer. Je n'arrive même pas à imaginer où je serai aujourd'hui sans toi. C'est grâce à toi que je peux aujourd'hui être heureux et épanoui. Tu m'as soutenu peu importe mes choix et je peux fièrement dire que si j'en suis ici aujourd'hui c'est grâce à toi. J'aimerais en dire tellement plus et j'ai du mal à trouver les mots pour exprimer ce que je ressens.

Table des matières :

1 Introduction:	1
2 Etat de l'art :	4
3 Matériels et Méthodes :	5
3.1 Présentation des sites d'étude :	5
3.1.1 Esnandes :	5
3.1.2 Marans :	6
3.2 Approches méthodologiques :	6
3.2.1 Échelle temporelle :	6
3.2.2 Précision spatiale :	6
3.2.3 Précision des modes d'occupation des sols (MOS) :	6
3.3 Données utilisées :	7
3.3.1 Sentinel 2:	7
3.3.2 Pléiades :	7
3.3.3 Drone :	7
3.3.4 Protocole des vols par drone et traitements des images :	8
3.4 Points GNSS:	9
3.5 Présentation des classes d'occupation des sols :	9
3.5.1 Esnandes :	9
3.5.2 Marans :	9
3.6 Indices utilisés :	10
3.7 Présentation de la méthode :	11
4 Résultats :	14
4.1 L'occupation des sols à partir des images acquises par drone :	14
4.2 L'occupation des sols à partir des images Sentinel 2 :	15
5 Discussions :	22
5.1 Accessibilité :	23
5.2 Traitements :	23
5.3 Répétitivité :	24
5.4 Résolution spatiale :	24
5.5 Résolution spectrale :	24
5.6 Considérations globales :	25
6 Conclusion :	25
7 Bibliographie :	27
0 Ammovos i	20

- Figure 1 : Dynamique des flux de CO₂ selon la qualité d'un écosystème côtier
- Figure 2 : Station d'Eddy Covariance du site de Marans, et d'Esnandes
- Figure 3 : Localisation des sites d'étude d'Esnandes et Marans
- Figure 5 : Cible de géoréférencement, Phantom 4 Pro et son capteur Sequoia, eBee X
- Figure 6 : Présentation de l'algorithme Random Forest
- Figure 7 : Processus de classification des images satellite et drone
- Figure 8 : Récupération du footprint
- Figure 9 : Occupation des sols du site d'Esnandes réalisées à partir d'images drone (capteur Sequoia)
- Figure 10 : Occupation des sols du site de Marans réalisées à partir d'images drone (capteur Sequoia)
- Figure 11 : Occupation des sols du site d'Esnandes réalisées à partir d'images Sentinel 2 acquises le 12 février, le 8 avril et le 16 mai, le 5 et le 7 juin, le 2 et le 5 juillet
- Figure 12 : Evolution du NDVI moyen mensuel du site d'Esnandes (réalisée partir d'images Sentiel 2)
- Figure 13: Evolution du NDVI moyen mensuel par classe à Esnandes
- Figure 14 : Occupation des sols du site de Marans réalisées à partir d'images Sentinel 2 acquises le 12 février, le 8 avril, le 5 et le 28 mai 2023
- Figure 15 : Evolution du NDVI moyen mensuel du site de Marans (réalisée partir d'images Sentiel 2)
- Figure 16 : Evolution du NDVI moyen mensuel par classe à Marans
- Figure 17 : Séquestration moyenne du carbone à Marans
- Figure 18 : Séquestration du carbone à Marans
- Tableau 1 : Présentation des données utilisées
- Tableau 2 : Présentation des indices spectraux utilisés
- Tableau 3 : Surfaces et pourcentages d'occupation des sols et de NDVI moyen par secteur de vent pour le mois de mai sur le site de Marans, avant et après la fauche du 24 mai
- Tableau 4 : Avantages et inconvénients des différentes sources de données utilisées

Liste des annexes :

Annexe I : Comparaison des cartes Sentinel 2 mono-date et multi-dates du site d'Esnandes

Liste des abréviations :

MNS : modèle numérique de surface

MOS: mode d'occupation des sols

1 Introduction:

En hommage à la convention Ramsar de 1971, se tenait le 2 février 2023 la journée mondiale des zones humides. Ce rendez-vous annuel dont la première édition date de 1997 permet de mettre en lumière ces espaces qui sont aujourd'hui capitaux mais qui restent peu mis en avant. Les zones humides permettent notamment de filtrer l'eau pour en améliorer la qualité, de stocker du carbone atmosphérique, d'amoindrir les phénomènes de crues et d'inondations et sont surtout des réservoirs de biodiversité (Zedler et Karcher, 2005). Le thème de cette année était : "Il est urgent de restaurer les zones humides !". Grâce à ce genre d'actions, ces espaces gagnent en visibilité et permettent au grand public de mieux les comprendre. Les zones humides littorales sont tout particulièrement vulnérables puisque les littoraux sont aujourd'hui des espaces convoités par diverses activités comme le tourisme, l'industrie ou tout simplement parce que le littoral a un fort pouvoir attractif sur les populations. Selon un rapport du Sénat (*Climat : vers un dérèglement géopolitique ?* 2015), plus de 20% de la population mondiale vivrait à moins de 30 km du littoral. Cette pression démographique s'accompagne d'un processus d'urbanisation qui peut se faire au détriment des zones humides.

C'est pourquoi les scientifiques s'intéressent à ces écosystèmes marins et côtiers et aux services qu'ils produisent. En effet, plusieurs types d'habitats et d'organismes (marais salés, mangroves, herbiers, algues) sont présents avec des rôles variés. Certains habitats sont par exemple capables de ralentir l'érosion des côtes et de protéger l'arrière-pays contre la submersion marine en jouant le rôle de zone tampon (Millennium Ecosystem Assessment, 2005). Ces écosystèmes sont également connus pour leur grande capacité à stocker du carbone. Ce carbone stocké est appelé "carbone bleu". Du fait de leur superficie plus réduite à l'échelle globale, ces espaces ne sont pas autant reconnus que les forêts pour leur fonction de stockage du carbone. Pourtant, d'après McLeod et al. (2011), les écosystèmes côtiers permettent de stocker jusqu'à 10 fois plus de carbone que les forêts. Le carbone stocké peut être retrouvé dans les sédiments, dans la biomasse vivante (en dessous et au-dessus du sol) et dans la biomasse non vivante (Duarte et al., 2005). Les marais littoraux peuvent capter et stocker du carbone via le processus de photosynthèse des plantes ou en piégeant des sédiments et des débris grâce à leur réseaux racinaires. Du fait des marées, les sols des marais littoraux sont régulièrement inondés. L'oxygène est alors moins présent dans ces sols humides; les micro-organismes qui y vivent ne peuvent ainsi pas dégrader la matière organique des plantes car leur respiration est réduite (Howard et al., 2017). Seule une partie du carbone est alors rendue à l'atmosphère du fait de la respiration des plantes et autres organismes (Howard et al., 2017). Dans un marais en bonne condition, la respiration sera plus faible que la production primaire faisant ainsi de ce milieu un puits de carbone.

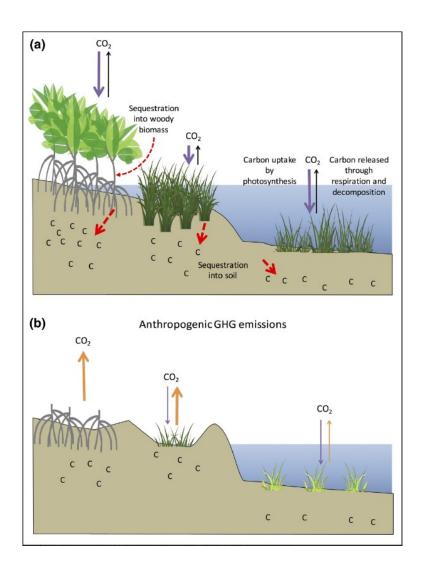


Figure 1 : Dynamique des flux de CO₂ selon la qualité d'un écosystème côtier Source Howard et al., 2017

"(a) In intact coastal wetlands (from left to right: mangroves, tidal marshes, and seagrasses), carbon is taken up via photosynthesis (purple arrows) where it gets sequestered long term into woody biomass and soil (red dashed arrows) or respired (black arrows). (b) When soil is drained from degraded coastal wetlands, the carbon stored in the soils is consumed by microorganisms, which respire and release CO2 as a metabolic waste product. This happens at an increased rate when the soils are drained (when oxygen is more available), which leads to greater CO2 emissions. The degradation, drainage, and conversion of coastal blue carbon ecosystems from human activity (ie deforestation and drainage, impounded wetlands for agriculture, dredging) results in a reduction in CO2 uptake due to the loss of vegetation (purple arrows) and the release of globally important GHG emissions (orange arrows). This is a unique trait of coastal blue carbon ecosystems compared to the other ecosystems discussed in the main text."

Pour étudier la relation entre les flux de carbone entre l'atmosphère et les écosystèmes côtiers, il est possible de s'appuyer sur les données issues de stations d'Eddy Covariance. Ces stations sont munies de différents capteurs dont un anémomètre sonique qui permet de mesurer la vitesse et la direction du vent et d'un analyseur de gaz à infrarouge qui permet de mesurer la concentration en eau et en CO₂ de l'atmosphère. La station tient son nom des flux en tourbillon (*eddy*, en anglais) qui existent entre l'atmosphère et un écosystème. Le vent est une composante capitale puisque ce dernier permet de mettre en avant les mouvements verticaux de la colonne d'air et donc des gaz (comme le CO₂) présents. En outre, cette

composante permet aussi de définir le *footprint* qui correspond à l'espace dans lequel la station mesure les flux de CO₂. Il est donc capital de connaître l'orientation du vent pour savoir d'où proviennent les données mesurées par la station pour les mettre en relation avec les occupations du sol correspondantes. Ainsi les footprints utilisés ici ainsi que les cartes d'occupation des sols ont été découpés selon des secteurs de vents (NNE, ENE, ESE, SSE, SSO, OSO, ONO, NNO).

Figure 2 : Station d'Eddy Covariance du site de Marans (a et b), et d'Esnandes (c) Crédits : Maxime Paschal, 2023

D'après les experts du GIEC (Groupe d'experts international sur l'évolution du climat), il faudrait avoir atteint la neutralité carbone d'ici 2050 pour limiter le réchauffement climatique à +1,5°C (GIEC, 2018). C'est dans ce contexte que le territoire de La Rochelle s'est lancé le défi de viser la neutralité carbone d'ici 2040. Pour ce faire, la ville a lancé le projet "La Rochelle Territoire Zéro Carbone" (LRTZC) en 2019 pour répondre à l'appel du projet national "Territoires d'Innovation" de la Banque des Territoires. L'objectif du projet LRTZC est de viser la neutralité carbone en réussissant à équilibrer les émissions de carbone grâce à la capacité de stockage de différents milieux (site web de LRTZC).

Ce stage a pris place dans l'axe "carbone bleu" du projet LRTZC. Le territoire de La Rochelle comprend 10 000 hectares de marais et 5 000 hectares de vasières intertidales. Ces espaces littoraux sont endommagés ou convoités du fait de la forte activité touristique de la ville (site web de LRTZC). Ainsi il est important de dresser un état des lieux du bilan carbone de ces espaces côtiers pour mettre en lumière leur importance dans le stockage du carbone. Grâce aux nombreuses études de ce projet, les décideurs publics et privés pourront mettre en place des plans de gestion efficaces visant à protéger ou à restaurer ces espaces capitaux et ainsi optimiser la captation et le stockage du carbone.

L'objectif a été d'étudier l'apport de la télédétection à l'analyse des échanges de carbone entre l'atmosphère et les écosystèmes côtiers, avec une application aux littoraux de Charente-Maritime. Pour cela un protocole permettant d'obtenir des informations sur l'occupation des sols a été mis en place pour illustrer les données de flux de carbone mesurées par des stations d'Eddy Covariance.

Pour proposer des données pouvant apporter les informations les plus pertinentes, il a fallu répondre aux questions suivantes :

- A quelles fréquences temporelles réaliser les cartes d'occupation des sols ?
- Quelle résolution spatiale utiliser ?
- Quelle finesse utiliser pour déterminer les différentes classes d'occupation des sols ?

2 Etat de l'art:

Différentes méthodes sont utilisées pour cartographier les habitats des marais littoraux en lien avec le stockage du carbone et avec nos questionnements. Dans l'hémisphère nord, les données sont généralement acquises en été ou au printemps comme Park et al. (2021) qui ont collecté leurs données en août. Le temps est généralement plus ensoleillé et la végétation a déjà pu se développer. Cependant cela ne vaut que lorsque l'objectif est de réaliser une carte à un instant t. Dans le cas d'un suivi annuel ou pluriannuel, les acquisitions de données peuvent être étalées, comme dans l'étude de Lanceman et al. (2022) où les données ont été acquises pendant 46 mois. Doughty et Cavanaugh (2019) ont quant à eux fait le choix d'acquérir des données de manière saisonnière pour suivre l'évolution de la végétation sur 1 année et ainsi proposer 4 cartes d'occupation des sols. Leurs données ont été acquises en février (hiver), mai (printemps), juillet (été) et novembre (automne).

On trouve dans la littérature de plus en plus de cas de cartographie des écosystèmes via l'utilisation de drones ou UAVs (Unmanned Aerial Vehicles) comme dans les études de Doughty et Cavanaugh (2019), Villoslada et al. (2019), Park et al. (2021), Lanceman et al. (2022), Villoslada et al. (2022). L'utilisation des drones permet d'avoir accès à des images ayant une résolution spatiale très fine (inférieure à 10 cm) mais cette résolution spatiale peut être accompagnée d'une résolution spectrale plus faible. D'un autre côté, les images satellites Landsat (Chen et al., 2012, Chi et al., 2018, Chi et al., 2021) sont aussi beaucoup utilisées. Ce type de données est souvent réduit à des classes d'occupation des sols plus générales. Pour autant, les données satellitaires permettent d'avoir des données spectrales plus riches qu'à partir des images drones et permettent aussi d'accéder aux données facilement sans déplacement sur le terrain.

Le dernier questionnement soulevé était celui de la finesse des classes d'occupation des sols. On trouve majoritairement dans la littérature deux types de classifications. La première est une classification avec des classes assez larges. Chi et al. (2018) proposent par exemple des classes comme : "végétation de zone humide" ("wetland vegetation"), "surfaces cultivées" ("farmland"), "sol nu" ("bare land"). Dans l'étude de Chen et al. (2012) les classes sont plus précises avec des classes comme : "buisson de zone humide" ("wetland shrub"), "herbe de zone humide" ("wetland herb") ou encore "feuillu dense" ("broadleaf dense") et "feuillu ouvert" ("broadleaf open"). Cependant, d'après Lovelock et al. (2014), dans un contexte d'étude du carbone bleu, il est plus judicieux de faire des classifications à l'échelle des espèces de plantes. En effet, cette précision permet de mieux appréhender les relations des échanges de flux de carbone par le prisme des différentes trajectoires végétatives des espèces qui influent sur la capacité de stockage du carbone. Park et al. (2021) réalisent une étude l'échelle de l'espèce, et montrent clairement des différences de capacité de stockage du carbone en fonction des espèces.

3 Matériels et Méthodes :

3.1 Présentation des sites d'étude :

Le projet LRTZC s'articule autour de 2 sites d'études situés dans le Parc Naturel Régional du Marais Poitevin, sur les communes d'Esnandes et de Marans (Charente Maritime).

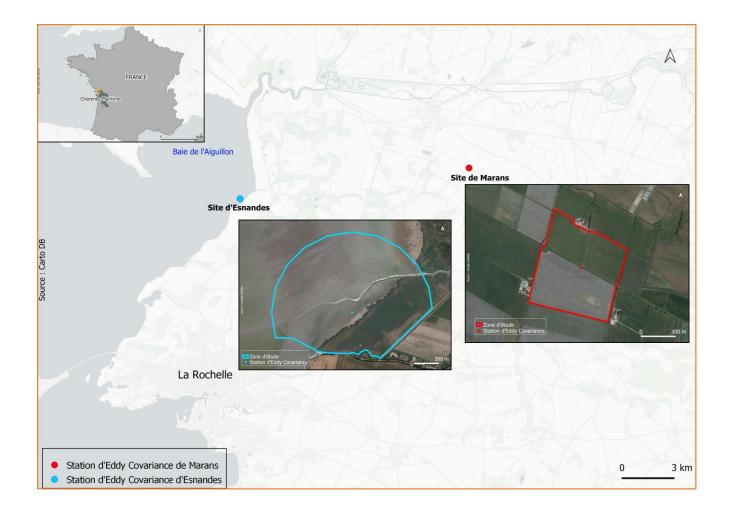


Figure 3 : Localisation des sites d'étude d'Esnandes et Marans

3.1.1 Esnandes:

Le site d'Esnandes (46°15'30.8"N 1°08'02.2"W) est constitué de pré-salé et de vasière. Ce site se situe dans la Baie de l'Aiguillon, à l'est de la Pointe Saint Clément. La zone d'étude est centrée sur la station d'Eddy Covariance qui couvre un cercle de 500 m de rayon. Cependant du fait de l'influence du vent, la station peut mesurer des données dans un rayon de 980 m. La zone d'étude utilisée pour cette analyse est donc un cercle de 980 m de

rayon, légèrement diminué sur la partie sud, où l'occupation du sol n'avait plus d'intérêt par rapport aux mesures de la station d'Eddy Covariance.

3.1.2 Marans:

Le site de Marans (46°16'50.0"N 0°57'53.6"W) se situe à Marans au milieu de parcelles agricoles. Au centre, se trouve le Canal de la Brune qui s'écoule d'est en ouest, avec un autre chenal s'écoulant du sud vers le nord. Au sud du canal, on trouve une parcelle exploitée par un agriculteur qui a semé du blé d'hiver le 15 octobre 2022. Au nord du canal, on trouve deux parcelles exploitées par un autre agriculteur. La parcelle à l'ouest est une prairie où pâturent des vaches ; la parcelle à l'est est semée en méteil (mélange de céréales) et de la prairie sera ressemée à l'automne 2023. Ce site est lui aussi centré autour de la station d'Eddy Covariance qui couvre un cercle de 300 m de rayon. Cependant, il a été décidé de couvrir les 3 parcelles agricoles du site, les analyses couvriront donc une surface plus importante que la zone de mesure de la station.

3.2 Approches méthodologiques :

3.2.1 Échelle temporelle :

Nous avons fait le choix de réaliser un suivi mensuel de deux sites d'études. Le postulat de départ était de faire un suivi saisonnier mais il a été jugé plus pertinent d'avoir des résultats mensuels pour avoir une meilleure compréhension des processus de stockage du carbone au cours de l'année. En outre, il est difficile de s'accorder sur la démarcation des saisons. Les limites saisonnières utilisées dans le calendrier civil ne sont pas toujours en accord avec une réalité physique au niveau de l'activité météorologique et des végétaux. Les données utilisées ici ont été acquises en février (hiver), avril (printemps) et juillet (été) par drone. Ces dates correspondent aux mesures expérimentales sur les terrains menées par les équipes du laboratoire (en accord avec le postulat initial de mesures saisonnières). Quant aux données Sentinel 2, elles ont pu être acquises pendant toute la période en fonction des conditions météorologiques. Ainsi les données Sentinel 2 nous ont permis d'avoir un suivi mensuel puisque ces images sont téléchargeables tous les mois avec plusieurs images par mois.

3.2.2 Précision spatiale :

La résolution spatiale des images Landsat étant de 30 m, il a été décidé d'utiliser des images Sentinel 2 qui disposent d'une bonne résolution spectrale, d'une résolution spatiale de 10 m et d'un temps de revisite de cinq jours environ. Ce dernier paramètre permet de suivre l'évolution des sites d'étude au cours de temps. En outre, dans l'objectif d'établir un protocole le plus efficace, il a été décidé de comparer des données Sentinel 2, des données Pléiades et des données acquises par un drone avec un capteur Sequoia.

3.2.3 Précision des modes d'occupation des sols (MOS) :

Enfin nous avons choisi de réaliser nos cartes à l'échelle du genre des plantes. Cette précision a été jugée suffisante. D'un autre côté pour le site de Marans il a été décidé de se centrer sur les pratiques agricoles.

3.3 Données utilisées :

Tableau 1 : Présentation des données utilisées

	Sentinel 2	Pleiades	Phantom, capteur Sequoia	
Résolution spatiale	10m	50cm	10cm	
Résolution spectrale	coastal aerosol, B, G, R, RE1, RE2, RE3, NIR, Narrow NIR, water vapour, SWIR Cirrius SWIR1, SWIR2	panchromatic, B, G, R, NIR	G, R, RE, NIR	
Esnandes	12 février 8 avril 16 mai 5 et 7 juin	7 février	20 février 17 avril	
Marans	12 février 8 avril 5 et 28 mai	7 février	21 février 19 avril	

3.3.1 Sentinel 2:

Les images Sentinel 2 ont été téléchargées à partir de la plateforme PEPS ou Theia. Les images sélectionnées étaient de niveau 1C sur lesquelles a été appliqué le programme de correction atmosphérique MAJA. Après cette correction les images sont de niveau L2A, ce qui correspond au niveau de prétraitements des images téléchargées sur la plateforme Theia. De ce fichier les images FRE (*Flat Reflectance*) qui correspondent aux images en réflectances au sol corrigées des effets de pente.

3.3.2 Pléiades :

Pour février, une image Pléiades a été mise à disposition. Cette image avait une résolution spatiale de 2m avec la possibilité d'opérer un pansharpening pour obtenir une image multispectrale avec 50cm de résolution spatiale. Cette image comprenait quatre bandes spectrales (bleu, vert rouge, proche infrarouge). Il a cependant été décidé de ne pas poursuivre cette étude avec ce type de données.

3.3.3 Drone:

Pour cette mission, deux drones ont été utilisés. Le premier, un Phantom 4 pro muni d'une caméra Sequoia, nous a permis d'obtenir des images multispectrales. Le second, un

eBee X RTK muni d'une caméra S.O.D.A. 3D, nous a permis d'obtenir par photogrammétrie un modèle numérique de surface (MNS).

3.3.4 Protocole des vols par drone et traitements des images :

Les caractéristiques des vols ont été similaires entre les sites d'études. Le Phantom volait à une altitude de 100 m tandis que le eBee X volait à une altitude de 110 m. Le temps de vol était d'environ 45 minutes à 1 heure pour les deux drones. Les recouvrements latéraux et frontaux étaient respectivement de 72% et 80% pour le Phantom et de 75% et 70% pour l'eBee X. Pour géoréférencer ces images mais aussi calculer la précision des MNS, un récepteur GNSS SP80 a été utilisé ainsi que 6 cibles placées sur des endroits plats et à nu. Un nombre variable (entre 30 et 60) de points de contrôle ont aussi été collectés selon les mêmes modalités.

Les images drones ont été pré-traitées avec Pix4D afin d'obtenir des images en format raster géoréférencées et en réflectance. Les images de MNS ont été réalisées avec le logiciel Agisoft Metashape.

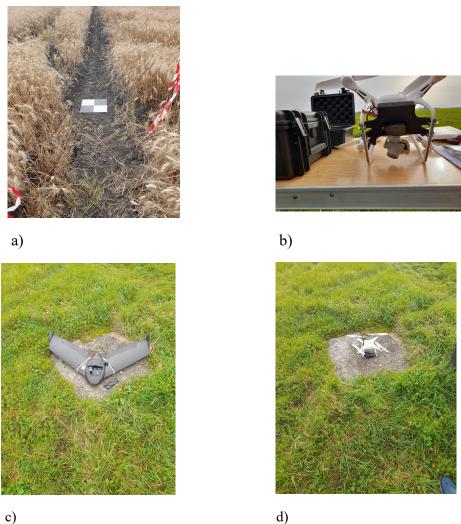


Figure 5 : cible de géoréférencement (a), Phantom 4 Pro et son capteur Sequoia (b et d), eBee X (c)

Crédits: Maxime Paschal, 2023

3.4 Points GNSS:

Pour valider les MOS obtenus par traitements d'images, des relevés de végétation localisés à l'aide d'un récepteur GNSS SP80 ont été réalisés. Les points de relevés ont ainsi permis d'obtenir un jeu d'échantillons d'entraînement pour réaliser la classification des images sans erreur de photo-interprétation mais aussi d'avoir un jeu de validation pour estimer la précision des modèles de classification.

3.5 Présentation des classes d'occupation des sols :

3.5.1 Esnandes:

La typologie des classes d'occupation des sols a été réalisée à l'aide d'écologues connaissant les différents genres présents sur le pré-salé étudié. Pour ce faire, le pré-salé a été parcouru en suivant des transects aléatoires et en suivant différentes orientations. Les genres de végétation retenus ont été les suivantes :

- -agropyron
- -soude
- -obione
- -obione dégradée (mauvais état de santé de la plante)
- -phragmite
- -aster
- -puccinellie
- -salicorne
- -spartine
- -vase
- -eau

Dans les premiers tests effectués, deux classes de vases ont été distinguées. Cette différenciation a été déduite de valeurs seuil obtenus avec l'histogramme des images de NDVI (normalized difference vegetation index). Cette différence provient des communautés microphytobenthiques que l'on retrouve dans la vase. Ces microorganismes sont soit des eucaryotes unicellulaires soit des cyanobactéries (bactéries photosynthétiques). Vivant dans les premiers millimètres de la vase, le microphytobenthos apparaît quand l'eau s'est retirée sous forme de tâches marron ou verdâtres (MacIntyre et al., 1996). Ces organismes sont en effet capables de migrer dans la colonne sédimentaire en suivant le cycle des marées. Différents types de vases peuvent être identifiées selon le développement du microphytobenthos lors de la marée basse (Palmer et Round, 1965). Ainsi il n'a pas été possible de mettre en valeur ces différentes classes de vases (pourtant nettement visibles sur nos images), puisqu'entre différentes prises de vue aériennes le microphytobenthos n'avait pas migré au même endroit.

3.5.2 Marans:

Ici, l'accent a été mis sur les pratiques de mise en valeur de l'occupation des sols. La typologie des classes est donc centrée sur les trois parcelles agricoles puis sur les autres objets présents sur le site. Grâce aux informations obtenues sur le terrain et grâce aux contacts avec les exploitants, la typologie suivante est proposée : -prairie

- -méteil
- -blé
- -bande enherbée
- -arbres et arbustes
- -sol nu
- -eau

3.6 Indices utilisés:

Dans l'objectif d'obtenir le modèle de classification le plus performant, des indices spectraux ont été calculés et utilisés. Ces indices ont été évoqués dans les différents articles cités précédemment.

Tableau 2 : Présentation des indices spectraux utilisés

Indices	Formules
NDVI (normalized difference vegetation index)	(NIR-R)/(NIR+R)
GNDVI (green normalized difference vegetation index)	(NIR-G)/(NIR+G)
SAVI (soil adjusted vegetation index)	((NIR - R) / (NIR + R + L)) * (1 + L) avec L=0,5
ARVI (atmospheric resistant vegetation index)	(NIR-2*R+B)/(NIR+2*R-B)
MSAVI (modified soil adjusted vegetation index)	((2*NIR+1)-((2*NIR+1)²-8*(NIR-2*R)) ^{0.5})/2
ASVI (atmospheric and soil vegetation index)	((2*NIR+1)-((2*NIR+1)²-8*(NIR-2*R+B)) ^{0.5})/2
GEMI (global environment monitoring index)	Ge*(1-0,25*Ge)-(R_2-0,125)/(1-R)
	avec Ge=(2*(NIR ² -R ²)+1,5*NIR+0,5*R)/(NIR+R+0,5)
DVI (difference vegetation index)	NIR-R
RVI (ratio vegetation index)	NIR/R
CRVI (coastal redness vegetation index)	(R-G)/NIR
EVI (enhanced vegetation index)	2,5*((NIR-R)/(NIR+6*R-7*B+1))
WAVI (water adjusted vegetation index)	(1+L)*((NIR-B)/(NIR+B+L)) avec L=0,5

3.7 Présentation de la méthode :

Pour réaliser les cartes d'occupation des sols, il a été décidé d'utiliser l'algorithme Random Forest. Celui-ci se base sur plusieurs arbres de décisions (forêt). Le choix final provient du résultat majoritaire en sortie de tous les arbres de décisions. Selon Rodriguez-Galiano et al. (2012), le Random Forest peut être performant sur des gros jeux de données, il peut gérer de nombreuses variables et il peut estimer les variables d'importance. Toujours d'après Rodriguez-Galiano et al. (2012), l'algorithme Random Forest est plus précis et robuste car il utilise plusieurs "classifieurs".

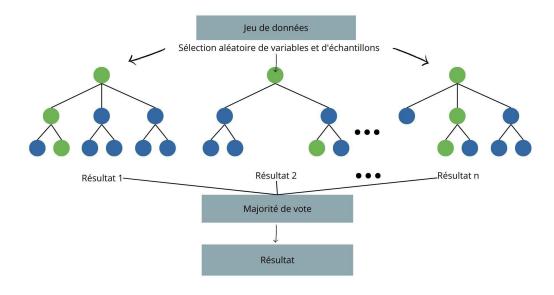


Figure 6 : Présentation de l'algorithme Random Forest

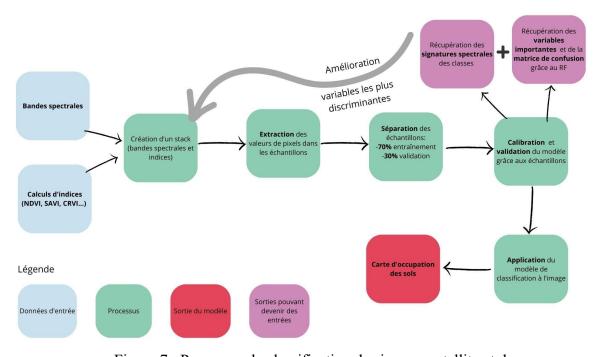


Figure 7 : Processus de classification des images satellite et drone

Pour réaliser les cartes d'occupations des sols, la méthode de classification a été empirique. Dans un premier temps, une version préliminaire du modèle de classification a été réalisée en utilisant toutes les bandes spectrales et les indices présents dans le tableau 2. De plus, il a été décidé de faire des classifications en combinant plusieurs images Sentinel 2 du même site. De ce fait, il a été possible de mieux séparer différentes classes d'occupation des sols en prenant en compte leur saisonnalité (Lunetta et Balogh, 1999). Ainsi, cette classification multi-dates a permis d'avoir une meilleure précision qu'une classification avec une seule image. Pour réaliser cette méthode, il a cependant fallu émettre le postulat que les pixels de nos cartes ne changent pas de classe d'occupation des sols sur la période étudiée. Cette méthode se base sur les variations de croissance (et sénescence) de la végétation. Pour autant, le suivi réalisé reste dynamique et les cartes produites évoluent si des modifications d'occupation des sols sont rencontrées sur le terrain (comme par exemple, l'avancée du présalé sur la vasière ou la fauche du méteil). Nos variables d'entrées comprenaient donc les bandes spectrales et les indices de chaque scène Sentinel 2. Grâce à l'out-of-bag error du Random Forest, il a été possible de déterminer le nombre d'arbres à utiliser (200, au lieu de 500 dans un premier temps). A partir des signatures spectrales des classes, des variables d'importances (indice de Gini, fourni par le Random Forest) et de la matrice de confusion, les variables les plus discriminantes ont été identifiées. L'étude de la matrice de confusion a permis d'identifier les classes en conflit lors du processus de décision. Il a donc été possible de mettre l'accent sur ces classes et de regarder en détail les signatures spectrales correspondantes pour éliminer les variables dont les valeurs pour ces classes étaient trop proches. Après ce processus d'étude des distances spectrales, les variables les plus discriminantes ont été sélectionnées. Plusieurs tests de classification ont ensuite été effectués, avec plus ou moins de tolérance par rapport au caractère discriminant des variables, dans le but de sélectionner le meilleur jeu de variables. Pour décider du modèle le plus performant et donc valider les variables à utiliser, chaque modèle de classification a été relancé plusieurs fois pour témoigner de sa stabilité (entre 15 et 20 fois). En effet, il est possible d'obtenir un bon score de précision en utilisant certaines variables. Toutefois, puisque l'objectif est de mettre en place un protocole, il faut s'assurer qu'il soit possible de réutiliser le même modèle de classification et d'obtenir une précision équivalente. Relancer plusieurs fois le même modèle permet alors de vérifier qu'un bon score de précision n'est pas "un coup de chance". Ainsi avec cette méthode il a été possible de savoir quelles variables utiliser pour chaque type de donnée.

Une fois la carte d'occupation des sols réalisée, ces résultats ont été mis en concordance avec les données de la station d'Eddy Covariance. Cette dernière propose sur une période donnée un *footprint* de ses mesures. Cependant ce *footprint* n'est disponible qu'au format png, il a donc fallu géoréférencer cette image.

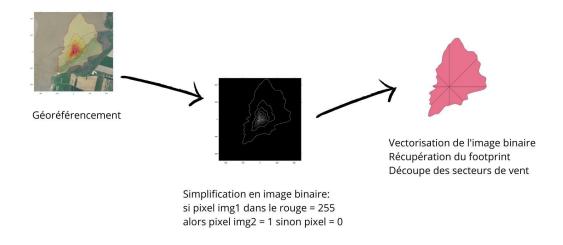


Figure 8 : Géoréférencement du footprint

L'image du *footprint* est centrée sur la position de la station dont la localisation est connue. En outre, on trouve sur cette image des distances par rapport à la station. Il a donc été possible de créer une zone tampon carrée sous QGIS dont la distance au centre est la même que celle sur l'image png. Pour géoréférencer l'image de *footprint*, il a donc été possible d'utiliser le point de la station et les quatre coins de la zone tampon. Ensuite il a fallu trouver un moyen pour isoler les différentes empreintes de la station pour ne pas garder le fond de l'image png. Les seuls éléments ayant des pixels rouge pur (bleu=0, vert=0, rouge=255) étant les pixels des limites des emprises de mesure de la station, une extraction a pu être réalisée. Une image binaire a donc été créée pour mettre en avant les limites des emprises. Cette image étant suffisamment simple, il a été possible de la vectoriser et de ne conserver que la forme de l'emprise voulue. Pour réaliser les quartiers dans l'emprise de mesure de la station, il a simplement fallu créer quatre droites orientées nord/sud et en faire pivoter trois (à 90°, 45° et -45°). Ensuite le polygone d'emprise de la station a été découpé en fonction de ces lignes pour obtenir les quartiers d'orientation de vent (NNE, ENE, ESE, SSE, SSO, OSO, ONO, NNO).

La dernière étape de la mise en valeur des résultats de la carte d'occupation des sols s'est faite sous R avec le package « Landscape metrics ». Ce package a permis d'obtenir la surface de chaque classe d'occupation des sols par quartier de vent.

En plus des cartes d'occupation des sols et les surfaces de chaque classe, des images de NDVI moyen mensuel ont été produites. Pour cela un script python a été mis en place. Ce script permet de se connecter au service Copernicus hub afin de télécharger des images Sentinel 2 selon différents critères (date, couverture nuageuse, localisation) et de calculer des images de NDVI automatiquement. Les images de NDVI correspondant à nos critères (pas de nuage sur le site, marée basse) ont ensuite été sélectionnées pour avoir des images moyennes mensuelles. Grâce à ces images il a été possible d'obtenir pour chaque secteur de vent, une valeur moyenne mensuelle de NDVI. En plus de cela, grâce à la fonction « statistiques de zone » de QGIS, il a été possible de récupérer la valeur moyenne de NDVI de chaque classe tous les mois. Un graphique de l'évolution de la valeur de NDVI a été mis en place pour suivre les évolutions de la végétation de manière à mieux comprendre les variations de flux

de CO₂ mesurés par la station d'Eddy Covariance. Ainsi, l'illustration des mesures de la station a pu se faire selon plusieurs clefs de lecture.

4 Résultats:

4.1 L'occupation des sols à partir des images acquises par drone :

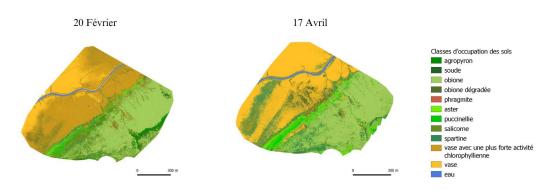


Figure 9 : Occupation des sols du site d'Esnandes réalisées à partir d'images drone (capteur Sequoia)

Les deux cartes d'occupation des sols ci-dessus représentent le site d'Esnandes le 20 février et le 17 avril. La carte de février est précise à 88,62 % et celle d'avril à 85%. On peut voir sur la carte de février deux types différents de vase. La classe "vase avec une plus forte activité chlorophyllienne", sert à mettre en avant l'activité des communautés microphytobenthiques.

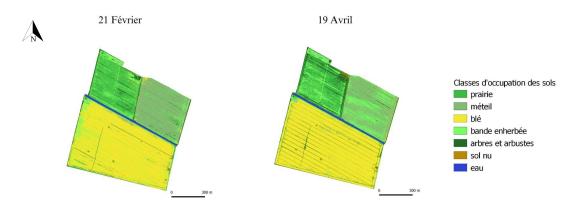


Figure 10 : Occupation des sols du site de Marans réalisées à partir d'images drone (capteur Sequoia)

Ci-dessus, nous avons les cartes d'occupation des sols du site de Marans, réalisées à partir des images drone équipé du capteur Sequoia. La carte de février est précise à 93,75% et celle d'avril à 90,62%.

4.2 L'occupation des sols à partir des images Sentinel 2 :

Dans l'objectif de faire un suivi mensuel de nos sites, nous avons comparé des cartes réalisées à partir d'une seule image (une pour chaque mois) et une carte réalisée à partir de plusieurs images et donc de plusieurs dates (approche multi-dates). Il a été jugé que les cartes réalisées à partir d'une seule image (approche mono-date) étaient moins précises que les multi-dates. En effet, certains patchs d'occupation des sols apparaissent ou disparaissent entre deux cartes mensuelles sans que de telles modifications aient été observées sur le terrain. L'approche multi-dates permet de prendre en compte les différents profils d'évolution de la végétation et ainsi d'éviter certaines confusions à un instant t. La carte multi-dates proposée permet alors d'éviter les différences de classification entre 2 dates mais cela ne peut se faire uniquement si aucune modification de l'occupation des sols n'est détectée sur le terrain.

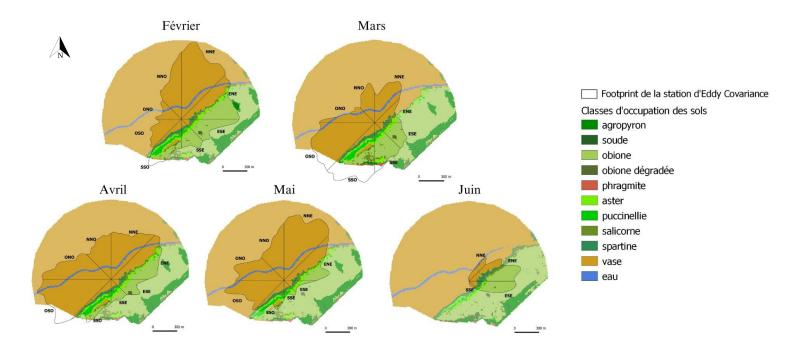


Figure 11 : Occupation des sols du site d'Esnandes réalisées à partir d'images Sentinel 2 acquises le 12 février, le 8 avril et le 16 mai, le 5 et le 7 juin, le 2 et le 5 juillet

Voici les cartes d'occupation des sols du site d'Esnandes réalisées à partir d'images Sentinel 2. L'occupation des sols de février à mai est identique pour les quatre dates et a été obtenue à partir des images de février, avril et mai, elle a une précision de 95,73%. Pour obtenir ces cartes, les images du mois de mars n'ont pas été nécessaires et il a été décidé de ne pas surcharger le modèle avec d'autres variables. Pour autant les images Sentinel 2 du mois de mars ont été utilisées pour obtenir un NDVI moyen mensuel. L'occupation des sols de juin et a été obtenue à partir des images de juin et juillet et la classification est précise à 92,31%. Cette carte est différente des autres : il a été constaté sur le terrain que le pré-salé a gagné du terrain sur la vasière à cause d'un assec. Il était donc impossible de continuer d'utiliser la même carte d'occupation des sols. Il est fait mention de l'image Sentinel 2 du 5

juillet sans que la carte de juillet ne soit présentée. Cette image Sentinel 2 a été utilisée dans l'optique de suivre l'approche multi-date. Cependant les cartes d'occupation des sols sont réalisées au mois n+1 lorsque les mesures de la station d'Eddy Covariance sont récoltées (données non disponibles actuellement).

Ces cartes présentes aussi les différents *footprints* mensuels. Ces zones représentent l'espace de mesure de la station d'Eddy Covariance. Elles ont des formes variables du fait de l'influence du vent. Le *footprint* de mars est plus étendu dans les secteurs de vent au sudouest puisque le vent vient majoritairement de cette direction. On ne retrouve plus sur ces cartes la spatialisation de l'activité du microphytobenthos puisqu'entre les différentes images, les pixels concernés varient spatialement. Bien que les changements ne soient pas radicaux, on observe sur la carte de juin que la soude a gagné du terrain sur l'agropyron. Sur site, des arbustes de soude bien qu'encore petits ont été observés dans cette zone. Nous pouvons donc écarter ici une erreur de classification et prendre en compte ce changement d'occupation des sols.

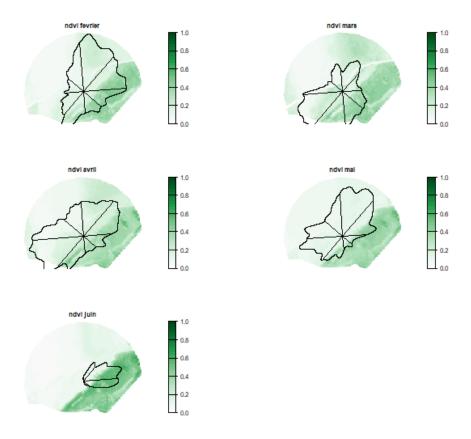


Figure 12 : Evolution du NDVI moyen mensuel du site d'Esnandes (réalisée partir d'images Sentiel 2)

Grâce à un script python, nous avons pu télécharger des images de NDVI pour avoir des moyennes mensuelles. On peut voir que la vasière a des valeurs de NDVI plus faibles que le pré-salé dont les valeurs tendent à augmenter. On remarque cependant des différences de valeurs au sein de la vasière du fait de l'activité du microphytobenthos. La zone au nord-est a des valeurs plus élevées et correspond à la zone découverte en premier lors de la marée basse.

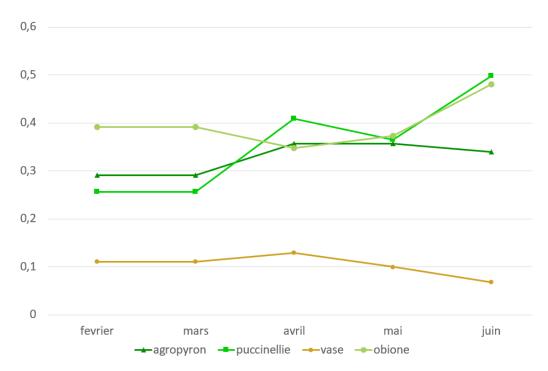


Figure 13: Evolution du NDVI moyen mensuel par classe à Esnandes

La figure 13 montre pour quatre classes d'occupation des sols les variations de valeurs de NDVI entre février et juin. Les valeurs de NDVI correspondant à des surfaces de vase sont proches de 0,1 et ont tendance à stagner, même si elles sont plus faibles en mai et juin (sûrement à cause de l'assec). D'un autre côté, les valeurs pour les classes de végétation tendent à augmenter, atteignant presque 0,5 en juin pour l'obione et la puccinellie. Les valeurs de NDVI de l'agropyron augmentent moins et stagnent même à partir d'avril. Ce graphique nous permet de mettre en avant les différences de croissance de la végétation.

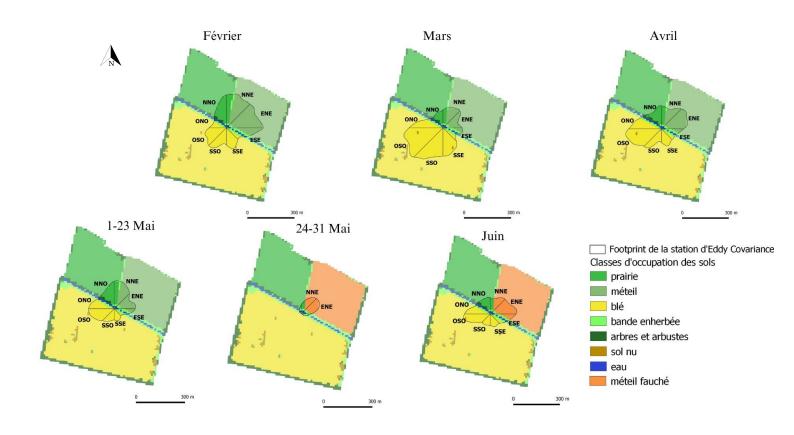


Figure 14 : Occupation des sols du site de Marans réalisées à partir d'images Sentinel 2 acquises le 12 février, le 8 avril, le 5 et le 28 mai 2023

Pour le site de Marans aussi une cartographie de l'occupation des sols a été réalisée à partir d'images de plusieurs dates. Le modèle de classification utilisé ici a une précision de 97,73%. Ici encore l'image du mois de mars n'a pas été nécessaire mais des images de ce même mois ont été utilisées pour calculer le NDVI moyen mensuel. Le mois de mai a été coupé en deux puisque le champ de méteil a été fauché le 24 mai, ce changement d'occupation des sols a été pris en compte. Nous pouvons noter que la forme des *footprints* de Marans et d'Esnandes sont semblables, celui de mars s'étend aussi plus dans la direction sud-ouest.

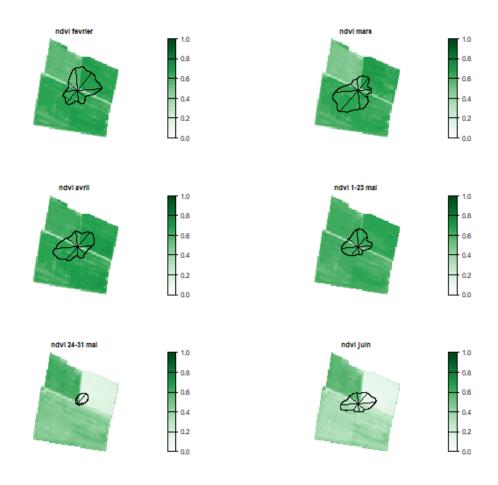


Figure 15 : Evolution du NDVI moyen mensuel du site de Marans (réalisée partir d'images Sentiel 2)

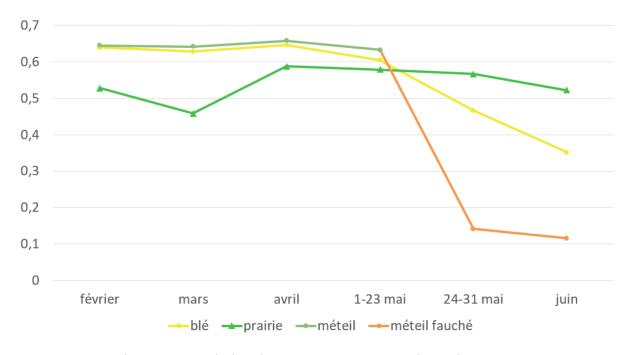


Figure 16 : Evolution du NDVI moyen mensuel par classe à Marans

De la même façon que pour le site d'Esnandes, nous avons récupéré une série temporelle d'images moyennes mensuelles de NDVIs. Ces informations nous permettent de mettre en valeur la chute brutale des valeurs pour le champ de méteil du fait de sa fauche. Elles permettent aussi de voir la sénescence du blé dont les valeurs baissent progressivement à partir d'avril. Les valeurs de NDVI de la prairie stagnent (sauf en mars) et commencent à baisser dès la fin mai.

Tableau 3 : Surfaces et pourcentages d'occupation des sols et de NDVI moyen par secteur de vent pour le mois de mai sur le site de Marans, avant et après la fauche du 24 mai

ESE

oso

sso

ONO

NNO

ENE

NNE

Surface en ha mai (du 1er au 23 mai) Marans

,								
blé			0,08	0,29	0,4	0,93	0,55	
prairie	0,44	1					0,04	0,79
eau	0,02	0,04	0,07				0,1	0,06
arbres et arbustes							0,08	0,07
bande enherbée	0,:	0,09	0,21	0,01			0,15	0,03
sol nu								
méteil	0,7	7 0,66	0,11					
ndvi moyen	0,62	0,60	0,53	0,60	0,61	0,61	0,56	0,59
pourcentage par secteur mai (du 1er au 23 mai) Marans	NNE	ENE	ESE	SSE	SSO	oso	ONO	NNO
blé			17,02	96,67	100	100	59,78	
prairie	34,92	2					4,35	83,16
eau	1,59	5,06	14,89				10,87	6,32
arbres et arbustes							8,70	7,37
bande enherbée	7,94	11,39	44,68	3,33			16,30	3,16
sol nu								
méteil	55,50	83,54	23,40					
ndvi moyen	0,62	0,60	0,53	0,60	0,61	0,61	0,56	0,59
Surface en ha mai (du 24 au 31 mai) Marans	NNE	ENE	ESE	SSE	sso	oso	ONO	NNO
blé			0,01	0,01				
prairie	0,11		,	,				0,03
eau	0,02		0,03				0,01	
arbres et arbustes	,							
bande en herbe	0,04	0,09	0,09	0,01	0,01	0,01	0,01	0,02
sol nu	,							
méteil	0,32	0,56						
ndvi moyen	0,26	0,18	0,30	0,37	0,33	0,33	0,39	0,47
Pourcentage par secteur mai (du 24 au 31 mai) Marans	NNE	ENE	ESE	SSE	sso	oso	ONO	NNO
blé			7,69	50				
prairie	22,45							50
eau	4,08	5,80	23,08				50	16,67
arbres et arbustes	,							
bande enherbée	8,16	13,04	69,23	50	100	100	50	33,33
sol nu	,	,	,					,
méteil								-
meten	65,31	81,16						
ndvi moyen	65,31 0,26			0,37	0,33	0,33	0,39	0,47

En plus de nos cartes pour chaque mois et pour chaque site, nous avons un tableau comme ceux ci-dessus. Ces tableaux permettent de savoir pour chaque secteur de vent la surface occupée par chaque classe d'occupation des sols mais aussi le pourcentage que cette surface représente dans le secteur. Chaque secteur de vent dispose aussi de sa valeur moyenne de NDVI. On peut voir que les secteurs où se situe le blé sont ceux du sud avec par exemple les secteurs OSO et SSO qui avant le 23 mai sont uniquement couverts par du blé. Les secteurs de prairies sont ceux du nord et ceux de méteil du nord-est. Il est difficile de comparer les tableaux entre les deux dates car les *footprints* ne sont pas les mêmes. Ainsi les secteurs OSO et SSO passent de 100% de blé à 100% de bande enherbée, entre ces deux périodes.

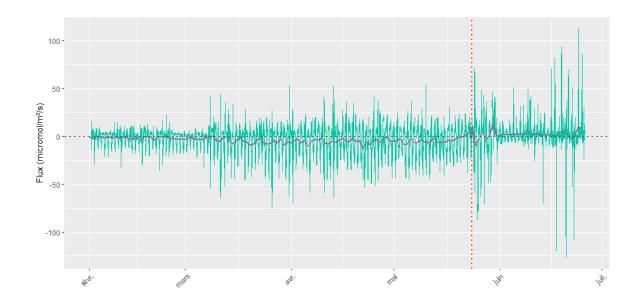


Figure 17 : Séquestration moyenne du carbone à Marans (courbe violette = moyenne mobile, pointillés rouges = fauche du méteil du 24 mai)

Source: Camille PERRY

La figure 17 montre (courbe violette) si le système étudié est source ou puit de carbone. La ligne verticale en pointillés rouges symbolise la fauche de la parcelle de méteil. Ce graphique permet de mettre une fois de plus en lumière le passage de puits à source de carbone du site de Marans. La station fournit aussi des données selon les secteurs de vents et mensuellement ces données fournissent donc des informations nous permettant de comprendre comment le site de Marans peut passer de puits à source de carbone.

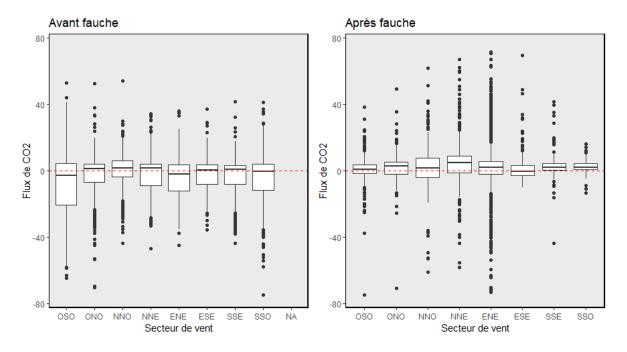


Figure 18 : Séquestration du carbone à Marans

Source: Camille PERRY

Ces boxplots nous montrent si un secteur de vent est source ou puits de carbone. Le trait noir au centre du boxplot correspond à la moyenne, si celle-ci est inférieure à 0 alors le secteur est puits de carbone. Les extérieurs du boxplot représentent le 1^{er} et le 3^e quartile. Les points extérieurs sont les outsiders et servent à situer les mesures les plus extrêmes. Pour mettre en relation ce graphique avec les données précédemment acquises, nous pouvons nous intéresser au secteur ENE. On peut voir que ce secteur passe de puits à source de carbone. Cela correspond à un secteur composé à 83% et 81% par la parcelle de méteil. Or comme nous le montrent les cartes d'occupation des sols, le méteil a été fauché. Ainsi l'activité de la végétation est beaucoup plus faible, comme nous le prouvent les données issues du NDVI. C'est pour ces raisons que l'on peut voir ce secteur passer de puits à source de carbone.

La mise en relation de toutes ces données permet de comprendre comment l'occupation des sols et ses modifications influencent la séquestration du carbone atmosphérique. Ainsi nous pouvons voir qu'avec la fauche du méteil, le secteur ENE passe de puits à source de carbone. En plus de la fauche du méteil, nos données mettent en avant la sénescence du blé qui joue aussi un rôle dans le passage de puits à source de carbone.

5 Discussions:

Les résultats obtenus ont été jugés comme étant en concordance avec les besoins de l'équipe de l'Ifremer et du LIENSs.

Tableau 4 : Avantages et inconvénients des différentes sources de données utilisées (pouce vert = avantage, pouce rouge = inconvénient, plus il y de pouces plus l'avantage ou l'inconvénient est important)

	Accessibilité	Traitements	Répétitivité	Résolution spatiale	Résolution spectrale
Drone	16	-	16	16 16	••
Pléiades		16	16	16	••
Sentinel 2	16 16	16	16	-	16 16

Le tableau 4 récapitule les différents avantages et inconvénients des sources de données utilisées. Tout d'abord l'accessibilité de la donnée joue un rôle majeur dans la mise en place du protocole de suivi. Dans ce cadre le premier objectif a été de proposer les données les plus adéquates et suffisamment simples à obtenir.

5.1 Accessibilité:

Les images Pléiades ont donc ici un gros désavantage. En effet, celles-ci sont payantes ou soumises à des quotas et les commandes peuvent mettre du temps à être reçues. De plus l'image Pléiades qui a été fournie n'était pas exploitable du fait de la présence de nuages et d'ombres de nuages. En effet, une demande de programmation avait été faite pour une image avec une couverture nuageuse inférieure à 20 % mais pour une surface de 100 km² minimum. En revanche, les images Sentinel 2 sont plus simples à obtenir, il suffit d'utiliser les plateformes PEPS ou Theia et de sélectionner les images les plus intéressantes. Un des enjeux du site d'Esnandes est de pouvoir accéder à des images à marée basse. En choisissant les images Sentinel 2, il est possible de trier les images selon ce critère, ce qui n'est pas possible avec les images Pléiades. Les données drones quant à elles sont plus ou moins facilement accessibles. Le LIENSs dispose du matériel et du personnel pour être en capacité d'effectuer l'acquisition et les pré-traitements des données. De plus, les sites d'études sont facilement accessibles. Cependant des imprévus peuvent arriver, comme pour les vols de juillet où le capteur multisprectrale Sequoia a cessé de fonctionner.

5.2 Traitements:

Le deuxième objectif portait sur les traitements de ces données. Les images Pléiades et Sentinel 2 sont simples à analyser et les traitements à réaliser sont très rapides ce qui permet de tester beaucoup de choses différentes. À l'opposé, les images drones sont très lourdes à traiter et à stocker aussi a-t-il fallu utiliser une station de calcul commune au laboratoire pour obtenir les cartes d'occupation des sols réalisées à partir des images drone.

5.3 Répétitivité:

Pour ce qui est de la répétitivité temporelle, ces trois sources de données sont très bonnes. Les images Pléiades peuvent être acquises tous les jours, les Sentinel 2 tous les cinq jours et les images drones sont disponibles n'importe quand, la météorologie étant la principale contrainte de vol. Les images Sentinel 2 étant acquises automatiquement il est possible d'avoir des images rétrospectivement ce qui peut être un avantage.

5.4 Résolution spatiale :

Les images drone et Pléiades sont à très haute résolution ce qui permet de bien cartographier l'hétérogénéité des écosystèmes. Les images drones sont peut-être même trop précises et les traitements mis en place n'ont pas été en mesure d'obtenir des résultats aussi convaincants que ce qui pouvaient être espérés. Si l'on compare nos résultats avec ceux des études de Doughty et Cavanaugh (2019), Villoslada et al. (2019), Park et al. (2021), Lanceman et al. (2022), Villoslada et al. (2022), nous pouvons nous rendre compte que nous n'obtenons pas d'aussi bons résultats qu'eux avec les données drones. La précision statistique de nos modèles issus des données drone est plutôt bonne (entre 80 et 90%). Toutefois les autres études obtiennent des scores plus hauts, comme Lanceman et al. Qui obtiennent plus de 90% de précision ou Park et al. (2021) qui obtiennent 93,25%. Nos scores bien que légèrement plus faibles ne sont pas mauvais pourtant lorsqu'on étudie en détail les cartes d'occupation des sols issues des données drones, on remarque des incohérences. En effet à Esnandes on trouve par exemple de la spartine en plein milieu de la vasière. D'après les observations terrains retrouver de tels patchs à cet endroit sur les cartes d'occupation des sols n'est pas possible. Conserver une telle erreur fausserait donc tous les traitements suivants en induisant de mauvaises interprétations. Pour l'image de Marans on retrouve par exemple des pixels classés comme blé dans la parcelle de méteil et inversement. Dans les études que nous avons citées, il n'ait jamais fait mention de telles problèmes de prédiction. Ces erreurs pourraient être corrigées en réalisant une classification multi-dates de la même manière que pour les images Sentinel 2 mais avec les données drones. Cependant cela ajouterait de la lourdeur aux traitements puisqu'il faudrait rééchantillonner les images pour qu'elles se superposent ce qui n'est pas le cas actuellement. Pour les images Sentinel 2, la résolution spatiale n'est pas forcément optimale et les pixels sont parfois hétérogènes ce qui fait perdre de l'information. Mais cette résolution spatiale a été jugée suffisante puisqu'elle permet de comprendre comment est structuré le paysage étudié.

5.5 Résolution spectrale :

D'un autre côté, la résolution spatiale de Sentinel 2 est compensée par une meilleure résolution spectrale. En comparaison, les images Pléiades et drones ont une plus faible résolution spectrale qui peut être compensée par l'ajout d'indices spectraux. Moins d'indices ont pu être calculés pour les images drones puisque le capteur Sequoia ne dispose pas de la bande bleue mais cette lacune peut être compensée par la bande du Red Edge qui est une bande spectrale adéquate pour séparer les classes de végétation.

5.6 Considérations globales :

Les images Pléiades auraient ainsi pu être le meilleur compromis avec une très bonne résolution spatiale, des indices et une classification multi-dates grâce à une bonne réactivité. Cependant, comme le but était de proposer le protocole le plus efficace tout en garantissant des traitements facilement mobilisables, les images Pléiades perdent de leur intérêt du fait de leur difficulté d'accessibilité.

L'un des avantages des images drones est de pouvoir obtenir des MNS par photogrammétrie. Ces données originales ont par exemple permis de calculer des différences de hauteur de végétation. Pour obtenir un résultat plus satisfaisant avec les images drone, il pourrait être envisageable d'utiliser les MNS et les images multispectrales pour réaliser des classifications orientées objet en utilisant les paramètres de textures obtenues grâce aux MNS.

Un des points faibles du protocole mis en place est que les informations du microphytobenthos sont perdues. En effet, puisque le choix est d'utiliser des données mensuelles (de télédétection comme de la station), il n'est pas judicieux de mettre en avant une occupation des sols instantanée, le temps d'une marée basse. De plus, pour améliorer la qualité des cartes d'occupation des sols, la méthode de classification multi-dates a été employée cependant celle-ci ne permet pas de mettre en avant le microphytobenthos. Entre deux dates, un même pixel pourrait ou non être de la vase une forte activité chlorophyllienne. Pourtant cette information peut être capitale puisque le microphytobenthos joue un rôle crucial dans la séquestration du carbone. Sur certaines images de NDVI, certains pixels de vase ont une valeur plus élevée ou égale à la végétation du pré-salé. Certaines valeurs observées sont aux alentours de 0,7.

Le script python qui télécharge et calcule automatiquement des images de NDVI est très pratique et gratuit. Il diffère de la plateforme en ligne Sentinel Hub qui permet d'avoir des images de NDVI en quelques clics. En effet avec cette plateforme, il n'y a pas besoin d'avoir de compétences ou de temps à donner. Mais cette plateforme est payante et elle ne permet pas de télécharger de la donnée. Sentinel Hub est un outil de visualisation lorsqu'il nous donne une image de NDVI avec sa légende, il ne donne uniquement qu'une image png qui reste certes pratique pour des présentations mais qui n'est pas notre objectif. En effet notre but a été de télécharger des rasters avec pixels contenant des valeurs de NDVI pour ensuite réutiliser ces valeurs. Mais il présente un problème de taille puisqu'il ne permet pas de télécharger toutes les images de la bibliothèque des produits Sentinel 2. En effet, lorsque les images sont trop anciennes (acquisition datant d'un an avant l'utilisation du script), cellesci sont archivées. Le script ne peut alors pas y accéder et s'arrête. Aucune solution n'a été trouvée pour retirer ces images indisponibles. Le script n'est donc pas optimisé au maximum et il faut parfois le relancer en changeant la date de début d'acquisition des produits pour éviter d'essayer de télécharger les produits indisponibles.

6 Conclusion:

Le protocole mis en place contribue à l'analyse des variations de flux de CO₂ mesurés par la station. Pour réaliser ce protocole divers questionnements avaient été soulevés : temporalité du suivi, sources de données à utiliser et finesse de la typologie des classes d'occupation des sols.

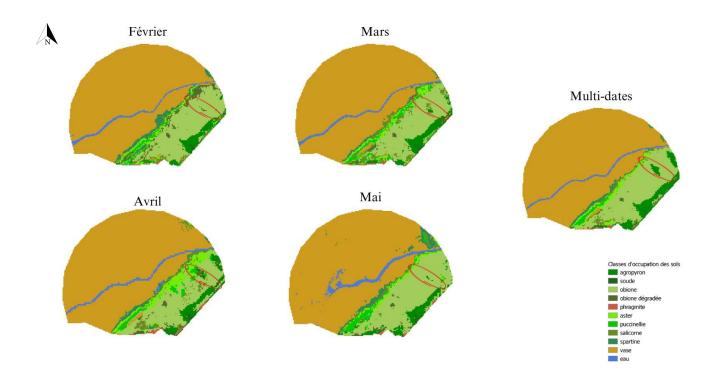
L'échelle mensuelle a été retenue pour cette étude. Pour ce point un *footprint* mensuel est fourni. Il est accompagné d'une carte d'occupation des sols, qui peut être la même sur une période de plusieurs mois si aucune modification de l'occupation des sols n'est détectée sur le terrain. Les valeurs moyennes de NDVI mensuelles de chaque classe apportent des informations complémentaires, ainsi que les surfaces de chaque occupation des sols au sein d'un secteur de vent du *footprint*, le pourcentage d'occupation de chaque classe dans son secteur et une valeur moyenne de NDVI du secteur de vent. Cette méthode permet de combiner des images multispectrales et des indices de végétation de plusieurs dates pour obtenir une carte plus précise.

La source de données retenue est Sentinel 2. En effet ces images sont facilement accessibles, il est possible d'obtenir des données tous les cinq jours en fonction des conditions météorologiques. De plus, ces images sont faciles et rapides à traiter. Le côté pratique est donc ici mis en avant tout en garantissant des produits suffisamment cohérents et pertinents pour l'étude.

Pour ce qui est de la finesse de la typologie, deux approches ont été mises en place pour se rapprocher au mieux des enjeux liés aux différents sites. Le site d'Esnandes dispose donc d'une typologie au niveau des genres de végétation pour interpréter au mieux les différences de capacités de séquestration du carbone au sein du pré-salé mais aussi dans la vasière avec l'activité des communautés microphytobenthiques. Pour le site de Marans, la typologie s'intéresse aux différentes pratiques agricoles mises en place (champs de blé et de méteil, prairie). Le suivi mensuel permet donc d'apprécier au mieux les évolutions des stades phénologiques au cours de l'année de manière à pouvoir expliquer des changements dans la capacité de séquestration du carbone. De cette façon, il est possible de comprendre comment le site de Marans est passé de puits à source de carbone (sénescence du blé et fauche du méteil).

Les perspectives sont maintenant de continuer le suivi mensuel en prenant en compte d'éventuelles modifications de l'occupation des sols sur le terrain. Puisque l'occupation des sols d'Esnandes a évolué à partir du mois de juin, il faudra acquérir d'autres images Sentinel 2 pour réaliser une nouvelle classification multi-dates. Il sera ainsi possible de suivre les avancées et recul du pré-salé sur la vasière mais aussi les modifications de la végétation dans le pré-salé. En effet, on remarque sur la carte de juin que la soude gagne du terrain sur l'agropyron et on remarque en parallèle sur le terrain que des arbustes de soude ont poussé. Pour le site de Marans, le même type de suivi devra être réalisé en gardant contact avec les agriculteurs, notamment pour connaître la date de la fauche du blé et pour étudier les semis de l'automne.

7 Bibliographie:


- Aitali, Rajaa, Maria Snoussi, Alexander S. Kolker, Bouchra Oujidi, et Nadia Mhammdi. « Effects of Land Use/Land Cover Changes on Carbon Storage in North African Coastal Wetlands ». *Journal of Marine Science and Engineering* 10, n° 3 (4 mars 2022): 364. https://doi.org/10.3390/jmse10030364.
- Chen, Baozhang, Nicholas C. Coops, Dongjie Fu, Hank A. Margolis, Brian D. Amiro, T. Andrew Black, M. Altaf Arain, et al. « Characterizing Spatial Representativeness of Flux Tower Eddy-Covariance Measurements across the Canadian Carbon Program Network Using Remote Sensing and Footprint Analysis ». *Remote Sensing of Environment* 124 (septembre 2012): 742-55. https://doi.org/10.1016/j.rse.2012.06.007.
- Chi, Yuan, Dahai Liu, et Zuolun Xie. « Zonal Simulations for Soil Organic Carbon Mapping in Coastal Wetlands ». *Ecological Indicators* 132 (décembre 2021): 108291. https://doi.org/10.1016/j.ecolind.2021.108291.
- Chi, Yuan, Honghua Shi, Wei Zheng, et Jingkuan Sun. « Simulating Spatial Distribution of Coastal Soil Carbon Content Using a Comprehensive Land Surface Factor System Based on Remote Sensing ». *Science of The Total Environment* 628-629 (juillet 2018): 384-99. https://doi.org/10.1016/j.scitotenv.2018.02.052.
- Chu, Housen, Xiangzhong Luo, Zutao Ouyang, W. Stephen Chan, Sigrid Dengel, Sébastien C. Biraud, Margaret S. Torn, et al. « Representativeness of Eddy-Covariance Flux Footprints for Areas Surrounding AmeriFlux Sites ». *Agricultural and Forest Meteorology* 301-302 (15 mai 2021): 108350. https://doi.org/10.1016/j.agrformet.2021.108350.
- Doughty, Cheryl, et Kyle Cavanaugh. « Mapping Coastal Wetland Biomass from High Resolution Unmanned Aerial Vehicle (UAV) Imagery ». *Remote Sensing* 11, n° 5 (6 mars 2019): 540. https://doi.org/10.3390/rs11050540.
- Duarte, C. M., J. J. Middelburg, et N. Caraco. « Major Role of Marine Vegetation on the Oceanic Carbon Cycle ». *Biogeosciences* 2, n° 1 (1 février 2005): 1-8. https://doi.org/10.5194/bg-2-1-2005.
- Eastwood, J. A., M. G. Yates, A. G. Thomson, et R. M. Fuller. « The Reliability of Vegetation Indices for Monitoring Saltmarsh Vegetation Cover ». *International Journal of Remote Sensing* 18, n° 18 (décembre 1997): 3901-7. https://doi.org/10.1080/014311697216739.
- Howard, Jennifer, Ariana Sutton-Grier, Dorothée Herr, Joan Kleypas, Emily Landis, Elizabeth Mcleod, Emily Pidgeon, et Stefanie Simpson. « Clarifying the Role of Coastal and Marine Systems in Climate Mitigation ». *Frontiers in Ecology and the Environment* 15, n° 1 (février 2017): 42-50. https://doi.org/10.1002/fee.1451.
- Lanceman, Dana, Mahmood Sadat-Noori, Troy Gaston, Christopher Drummond, et William Glamore. « Blue carbon ecosystem monitoring using remote sensing reveals wetland restoration pathways ». *Frontiers in Environmental Science* 10 (3 novembre 2022): 924221. https://doi.org/10.3389/fenvs.2022.924221.
- Lovelock, Catherine E., Maria Fernanda Adame, Vicki Bennion, Matthew Hayes, Julian O'Mara, Ruth Reef, et Nadia S. Santini. « Contemporary Rates of Carbon Sequestration Through Vertical Accretion of Sediments in Mangrove Forests and Saltmarshes of South East

- Queensland, Australia ». *Estuaries and Coasts* 37, n° 3 (mai 2014): 763-71. https://doi.org/10.1007/s12237-013-9702-4.
- Lunetta, R. S, et M. E. Balogh. « Application of multi-temporal Landsat 5 TM imagery for wetland identification ». *Application of multi-temporal Landsat 5 TM imagery for wetland identification* 65, n° 11 (1999): 1303-10.
- MacIntyre, Hugh L., Richard J. Geider, et Douglas C. Miller. « Microphytobenthos: The Ecological Role of the "Secret Garden" of Unvegetated, Shallow-Water Marine Habitats. I. Distribution, Abundance and Primary Production ». *Estuaries* 19, n° 2 (juin 1996): 186. https://doi.org/10.2307/1352224.
- Mcleod, Elizabeth, Gail L Chmura, Steven Bouillon, Rodney Salm, Mats Björk, Carlos M Duarte, Catherine E Lovelock, William H Schlesinger, et Brian R Silliman. « A Blueprint for Blue Carbon: Toward an Improved Understanding of the Role of Vegetated Coastal Habitats in Sequestering CO ₂ ». *Frontiers in Ecology and the Environment* 9, n° 10 (décembre 2011): 552-60. https://doi.org/10.1890/110004.
- Palmer, John D., et Frank E. Round. « Persistent, Vertical-Migration Rhythms in Benthic Microflora: I. The Effect of Light and Temperature on the Rhythmic Behaviour of *Euglena Obtusa* ». *Journal of the Marine Biological Association of the United Kingdom* 45, n° 3 (octobre 1965): 567-82. https://doi.org/10.1017/S0025315400016428.
- Park, Seong-Il, Young-Seok Hwang, et Jung-Sup Um. « Estimating Blue Carbon Accumulated in a Halophyte Community Using UAV Imagery: A Case Study of the Southern Coastal Wetlands in South Korea ». *Journal of Coastal Conservation* 25, n° 3 (juin 2021): 38. https://doi.org/10.1007/s11852-021-00828-1.
- Rodriguez-Galiano, V. F., B. Ghimire, J. Rogan, M. Chica-Olmo, et J. P. Rigol-Sanchez. « An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification ». *ISPRS Journal of Photogrammetry and Remote Sensing* 67 (1 janvier 2012): 93-104. https://doi.org/10.1016/j.isprsjprs.2011.11.002.
- Villoslada, M., T.F. Bergamo, R.D. Ward, N.G. Burnside, C.B. Joyce, R.G.H. Bunce, et K. Sepp. « Fine Scale Plant Community Assessment in Coastal Meadows Using UAV Based Multispectral Data ». *Ecological Indicators* 111 (avril 2020): 105979. https://doi.org/10.1016/j.ecolind.2019.105979.
- Villoslada, Miguel, Liis Sipelgas, Thaísa Fernandes Bergamo, Raymond D. Ward, Endla Reintam, Alar Astover, Timo Kumpula, et Kalev Sepp. « Multi-Source Remote Sensing Data Reveals Complex Topsoil Organic Carbon Dynamics in Coastal Wetlands ». *Ecological Indicators* 143 (octobre 2022): 109329. https://doi.org/10.1016/j.ecolind.2022.109329.
- Zedler, Joy B., et Suzanne Kercher. « WETLAND RESOURCES: Status, Trends, Ecosystem Services, and Restorability ». *Annual Review of Environment and Resources* 30, nº 1 (2005): 39-74. https://doi.org/10.1146/annurev.energy.30.050504.144248.

Sitographie:

- Sénat. « Climat : vers un dérèglement géopolitique ? ». https://www.senat.fr/rap/r15-014/ r15-014.html.
- Communauté d'Agglomération et Ville de La Rochelle, « La Rochelle Territoire Zéro Carbone ». https://www.larochelle-zerocarbone.fr/.

8 Annexes:

Annexe I : Comparaison des cartes Sentinel 2 mono-date et multi-dates du site d'Esnandes Exemple de zone d'intérêt entourée en rouge

MASTER : GAED

Parcours : TELENVI

Spécialisation / option :

Enseignant référent : Samuel Corgne

Auteur(s): Maxime Paschal Organisme d'accueil: UMR 7266 LIENSs, La

Rochelle Université

Date de naissance* : 22/01/1999 Adresse : 2 rue Olympe de Gouges, 17000 La

Rochelle

Nb pages: 26 Annexe(s):1

Année de soutenance : 2023 Maître de stage : Nathalie Long, Natacha Volto

Titre français : Apport de la télédétection à l'analyse des échanges de flux de carbone entre l'atmosphère et les écosystèmes côtiers – Application aux littoraux de Charente-Maritime

Titre anglais: Remote Sensing's contribution to the study of the exchanges of carbon fluxes between the atmoshpere and the coastal ecosystems – Application on the Charente-Maritime's coastaline

Résumé: Les zones humides littorales sont des écosystèmes pouvant séquestrer jusqu'à dix fois plus de carbone que les forêts (McLeod et al., 2011). Pourtant ce sont des espaces subissant de nombreuses pressions (industrie, tourisme, logement) et sont des espaces peu étudiés dans le cadre des flux de carbone. Dans le cadre du projet La Rochelle Territoire Zéro Carbone, l'objectif est de dresser un état du bilan carbone de ces écosystèmes. Cette étude vise donc à analyser l'apport de la télédétection à l'analyse des échanges de carbone entre l'atmosphère et l'occupation des sols. Pour cela une comparaison de différentes données a été faite, allant des données drone résolues à 3 cm aux données Sentinel 2 résolues à 10 m en passant par les Pléiades à 50 cm. Le protocole mis en place s'appuie sur des données Sentinel 2 pour réaliser des cartes d'occupations des sols. Bien que la résolution spatiale soit inférieure (en comparaison des données Pléiades ou drone), la facilité d'accès à la donnée corrigée en atmosphère et la répétitivité d'acquisition permettent d'effectuer un suivi mensuel des écosystèmes. Les résultats obtenus montrent une corrélation entre la croissance et la sénescence d'un écosystème, visible grâce aux images Sentinel 2 (notamment au travers de l'évolution du NDVI), et sa capacité à séquestrer du carbone. Ainsi pour le site de Marans (paysage agricole), avec la sénescence du blé et la fauche de la parcelle de méteil, le système étudié passe de puits à source de carbone.

Abstract: Coastal wetlands are ecosystems that can store up to ten times more carbon than forests (McLeod et al., 2011). However, those spaces suffer from many pressures (industry, tourism, housing) and few studies have been made about those spaces and their link with carbon fluxes. Within the scope of the La Rochelle Territoire Zero Carbone project, the aim is to study the state of the carbon footprint of those coastal ecosystems. This study aims to study the contribution of remote sensing to the study of carbon exchanges between the atmosphere and the land cover. To answer this, UAVs data (3 cm resolution), Pleiades data (50 cm resolution) and Sentinel 2 data (10 m resolution) have been compared. The protocol set up relies on Sentinel 2 data to create land cover maps. Although the spatial resolution is rough (compared to Pleiades or UAV data), the ease to access the data and the repetitiveness of the data acquisition help to get a monthly monitoring of the ecosystems. The results show a correlation between the growing and agigng of the vegetation, visible with the Sentinel 2 data (evolution of the NDVI), of an ecosystem and its storage capacity. Indeed, for the Marans site (agricultural landscape), with the ageing of the wheat and the mowing of the meslin, the systems went from carbon sink to carbon source.

Mots-clés: Télédétection, flux de carbone, écosystèmes côtiers, Charente-Maritime

Key Words: Remote sensing, carbon fluxes, costal ecosystems, Charente-Maritime

^{*} Elément qui permet d'enregistrer les notices auteurs dans le catalogue des bibliothèques universitaires